#### Introduction

- Monitoring is often the most overlooked aspect of a reclamation project
- Site visits during and after reclamation activities
- Incorporate monitoring costs into the budget at the beginning of a project

## Purposes

- Assess if reclamation objectives are on track or have been met
- Locate problems, if any
- Develop remediation recommendations, if needed
- Evaluate successes, failures, and determine cost-effectiveness

## Purposes

- Verify contract compliance
- Assure adequate data are available to guide remedial actions, if needed
- Provide for future cost savings



## Monitoring Plan

- Monitoring plan should be written and included as a section in the reclamation plan before implementation begins
- Plan should be "tailor-made"

## Key Elements

- Clearly identify the reclamation objectives
- Outline and describe monitoring techniques to be used, including a monitoring schedule
- Clearly define success criteria
- Identify reference area
- Summarize and report monitoring results

#### What to Monitor?

- Soil erosion
- Vegetation establishment
- Wildlife use
- Climatic variables (e.g. precipitation, soil moisture, air and soil temperature)
- Incursions onto site/subsequent disturbances

- Qualitative vs. Quantitative
  - Reclamation objectives
  - Reporting requirements
  - Budgetary constraints
- May be best to use combination of both techniques

- Qualitative monitoring
  - Reconnaissance site visits
  - Observe and document site conditions
  - Important to take good notes
  - Standardized checklist
  - Digital video camera
  - Color photographs from standardized photo points



- Quantitative monitoring
  - Taking measurements or counts



## Techniques

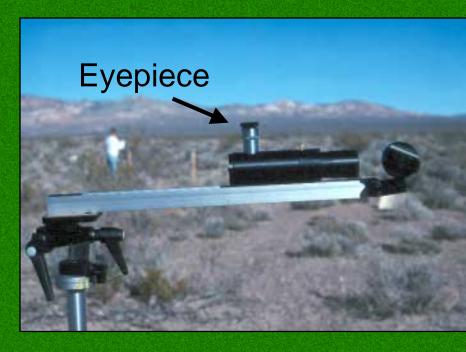
Soil erosion



Table 4-1. Example of a soil-erosion rating and classification form for assessing erosion status in the field.

| Rating<br>Value                            | A<br>Surface Litter          | B<br>Pedestalling                                   | C<br>Rills < 23 cm<br>(9 in)                       | D<br>Rills > 23 cm<br>(9 in)                       | Totals    |
|--------------------------------------------|------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------|
| 1                                          | Accumulating in place        | No visual evidence                                  | No visual evidence                                 | No visual evidence                                 |           |
| 2                                          | Slight<br>movement           | Slight pedestalling                                 | Rills in evidence<br>at intervals > 3 m<br>(10 ft) | Rills in evidence<br>at intervals > 3 m<br>(10 ft) |           |
| 3                                          | Moderate<br>movement         | Small rock and plant pedestalling                   | Rills at 3 m (10 ft) intervals                     | Rills at 3 m (10 ft) intervals                     | (A+B+C+D) |
| 4                                          | Extreme<br>movement          | Pedestalling<br>evident, plant<br>roots exposed     | Rills at 1.5 – 3 m<br>(5 – 10 ft)<br>intervals     | Rills at 1.5 – 3 m<br>(5 – 10 ft)<br>intervals     |           |
| 5                                          | Very little remaining litter | Most plants and rocks pedestalled and roots exposed | Rills at < 1.5 m<br>(5 ft) intervals               | Rills at < 1.5 m<br>(5 ft) intervals               |           |
| Example:                                   | Surface Litter<br>Rating: 3  | Pedestalling<br>Rating: 3                           | Rills < 23 cm<br>Rating: 3                         | Rills > 23 cm<br>Rating: 3                         | 12.0*     |
| Total Rating Value Erosion Condition Class |                              |                                                     |                                                    |                                                    |           |
| * Number Rating for Totals:                |                              | 0.0 – 4.0                                           |                                                    |                                                    |           |

- Vegetation measurements
- Intent is brief overview (Bonham, 1989; Elzinga et al., 1998; LCTA Manuals)
  - density
  - cover
  - frequency
  - biomass
  - species richness
  - species diversity


- Density (# counting units per unit area)
  - Counting unit should be consistent and distinguishable
  - Limited measure of community dominance
  - Easy to understand
  - Useful for measuring seedling emergence
  - Useful for monitoring plant responses to various vegetation treatments
  - Most sensitive to changes caused by mortality or recruitment

- Density estimates
  - plot (quadrat)
  - distance
  - line transect



- Cover (percentage of ground surface covered by vegetation material)
  - Commonly measured quantity in vegetation sampling
  - Different life forms can be evaluated in comparable terms
  - Important factor in erosion models
  - Not a very useful measure for seedlings
  - Cover changes through growing season

- Cover estimates
  - line-intercept
  - point-intercept
  - ocular estimate
  - mapping and charting
  - cover class (e.g.Daubenmire scale)
  - photographic methods



Cover scope

- Frequency (# of times a species is present in given # of quadrats)
  - Usually expressed as a percentage
  - Easiest and quick quantitative measurement
  - Most difficult to interpret
  - Dependent on shape and size of quadrat
  - Useful for detecting changes in vegetation structure

- Frequency measures
  - plot, nested plot, and complementary plot are most common methods
  - point sampling
  - step-point method
  - loop method

- Biomass (measure of "primary production" or the energy fixed by plants)
  - Necessary for proper understanding of ecosystem dynamics
  - Vegetation composition (dry weight) one of best indicators of species importance within a plant community
  - Variable from year to year
  - Labor-intensive and costly

- Biomass measures
  - Direct
    - Harvesting/clipping/mowing
    - Oven or air-dry
  - Indirect
    - Reference unit
    - Weight estimates and double sampling
    - Correlations between various plant characteristics (e.g. leaf length, crown area, plant volume, cover) and biomass



# Techniques Species Diversity

- Species richness (# species per unit area)
- Species diversity (evenness of abundance among the species)
  - Shannon-Weiner diversity index
  - MacArthur-Wilson diversity index

- Sample size
  - Depends on level of accuracy or precision you need or are required to provide and the resources you have to do the monitoring
  - Statistical formulas for determining adequate sample size (Bonham, 1989)

- Common equipment
  - Quadrats
  - Measuring tapes
  - Cover scopes
  - Laptop computer
  - Hand-held palmtop computer (data sheets)



- Data analysis
  - Descriptive statistics (e.g. mean, standard deviation)
  - Regression
  - Analysis of variance and mean separation procedures
  - Depends on reclamation objectives, reporting requirements, bond releases, or potential legal challenges

- Monitoring timing
  - During implementation phase
  - Three to five years minimum after implementation
- Monitoring frequency
  - Reclamation objectives
  - Site accessibility
  - Budgetary constraints
  - Time of year

#### Success Criteria

- Used to evaluate whether reclamation objectives have been met or not
- If criteria are not met, remedial action should be taken
- Need to be achievable and somewhat flexible
- May be dictated by government regulations or stakeholders

#### Reference Areas

- Used to determine or approximate predisturbance state of disturbed site
- Data from reference area used to develop seed mixes and transplant needs and for comparison with data collected from
  - revegetated sites
- LCTA plots

#### Reference Areas

- Criteria for comparing reference and revegetated areas (Vogel, 1987)
  - Site factors (e.g. elevation, slope, aspect) similar
  - Composed of same plant life-forms
  - Similar management and long-term integrity
  - Similar soil characteristics
  - Both sites are able to produce similar vegetation
  - If possible, be within 20 miles of each other
  - Similar sampling design

## Reporting Monitoring Results

- Results should be summarized and communicated to the right people via formal reports, informal reports, or memos to file
- Report format may be pre-determined and should contain answers to the following questions:
  - Are reclamation objectives on track or have they been met?
  - Are there any problems (e.g. erosion, dead plants)?

## Reporting Monitoring Results

- Are any remedial actions needed?
- What techniques were successful and why?
- What techniques failed and why?
- What was the cost-effectiveness of each technique?
- Were contract specifications met?
- Were there any inconsistencies between what was written in the reclamation plan and what actually occurred during implementation?

## Questions